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I. INTRODUCTION
A shell is a type of structural element which is 

characterised by its geometry, being a three-dimensional solid 
whose thickness is very small when compared with other 
dimensions. Shell structures possess various properties like 
high in plane stiffness, space containment, high strength to 
weight ratio, load carrying capacity etc., hence are extensively 
used in the fields of aerospace engineering, ship technology. 
Composites are materials which are formed by the 
combination of two or more different materials. They are 
preferred over their isotropic counterparts due to superior 
qualities in all fields of engineering. Laminated composites are 
widely used in aerospace applications. They form the body of 
aircrafts, fairings, payload etc. These structures are susceptible 
to wide range of loads, both static and dynamic. 

Shells being thinner in section, buckling is the major 
condition of instability. Buckling can be broadly classified 
into two, static buckling and dynamic buckling based on the 
nature of load. Dynamic buckling can be further classified into 
vibration buckling and pulse buckling. The former relates to 
the response of structure to oscillatory loads and the latter 
relates to the response to impulse loads. The state of pulse 

buckling is more often encountered in the aerospace structures 
like ground impact of aircraft while landing, landing of the 
payload at final destination etc. 

Imperfection can be defined as geometric or load 
irregularities in the structure. Initial geometric imperfection is 
one of the main reason for the discrepancies between the 
classical theoretical predictions and experimental results in 
case of thin walled shells under buckling. The presence of 
imperfection can affect the buckling strength of the shell 
considerably. Hence, their consideration in the numerical 
simulation is essential. In the absence of any raw data for 
imperfection, Koiter’s theory can be employed to assess the 
effect of imperfection as they yield lowest buckling loads, 
hence the worst imperfections [1]. 

Very few works have been reported on the effect of 
imperfections on the dynamic buckling behaviour of 
composite conical shells, even though many works are 
available on the buckling of imperfection sensitive cylindrical 
shells under dynamic loads. Hutchison and Budiansky [2] 
carried out the dynamic buckling study on isotropic cylindrical 
shells using closed form solution technique. They assumed 
that the shells possessed imperfections similar to their eigen 
mode. Schokker et al. [3] performed numerical studies on the 
dynamic instabilities of the unstiffened and stiffened 
composite cylindrical shells under hydrostatic pressure. Pulse 
loading was applied for isotropic, anisotropic and orthotropic 
shells and their response were investigated. 

Sofiyev [4] investigated the buckling behaviour of an 
orthotropic composite truncated conical shell with 
continuously varying thickness, subjected to a uniform 
external pressure which is a power function of time. 
Galerkin’s as well as Ritz method were employed to obtain the 
dynamic buckling load and static critical loads. Effect of 
variation of semi vertex angle, power in the thickness 
expression, power of time in the external pressure expression 
were studied and it was found that these factors have 
appreciable effects on buckling behaviour of the shell. Sofiyev 
[5] studied the buckling of functionally graded truncated 
conical shells under axial loading. Galerkin’s, Runge-Kutta 
methods and Wolmir criterion were applied to determine the 
dynamic buckling load. Influence of certain parameters like 
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material compositions, loading speed, as well as shell 
geometries were also studied. Ajdari et al. [6] researched on 
the buckling behaviour of composite truncated conical shells 
under external loading by theoretical and numerical methods. 
Ritz method was employed for finding the dynamic stability 
load. The critical static and dynamic buckling loads were 
found analytically. Results of analytical calculations were 
compared with numerical results and with other analytical 
results from the literature and found that the static buckling 
load formula has very good agreement with other theoretical 
and numerical results. It was found that buckling pressure has 
a linear relationship with semi vertex angle. As geometric 
ratio is increased, the values of buckling loads decrease 
rapidly at first then remains constant. Showkati et al. [7] 
conducted experimental investigation on the buckling 
behaviour of conical shells under weld-induced imperfections 
on SCC (Shallow Conical Cap) and DCC (Deep Conical Cap) 
steel specimens. Initial depression of shell was created through 
welding, loaded under hydrostatic pressure. The results of the 
tests conducted in this study revealed that large imperfections 
strengthen the structure. The stiffening effect created by the 
local imperfection was higher for SCC specimens than the 
DCC cones.  

II. PROBLEM STATEMENT
Laminated conical shell made up of CFRP and a total 

length of 300 mm, base radius of 150 mm was chosen for the 
present study. The shell consists of 8 plies of 0.125 mm 
thickness each and semi vertex angle of 15º. Two layups 
[0°/0°/60°/-60°]s and [0°/45°/-45°/0°]s were chosen for the 
current study, where 0°corresponds to the meridional direction 
of the shell and stacking is done from outside to inside. The 
material properties for the layup is given in Table I [8].

Imperfections were applied to the geometry using Koiter’s 
theory. According to this, the linear buckling mode shapes are 
employed as the imperfection shape as it yields the lowest 
possible buckling load. The first static buckling mode 
extracted from eigen value analysis was applied as the 
imperfection shape with various amplitudes ‘a’ with respect to 
thickness of the shell ‘t’ [9]. In the present study, 
imperfection magnitudes (a/t) ranging from 0, 0.05, 0.10, 0.25 
and 0.50 were considered. 

The buckling analyses was carried out using the finite 
element software ABAQUS. Initially, the buckling analysis of 
the shell subjected to axial compression was performed by 
linear static (eigen value) analysis and nonlinear static method 
using ABAQUS/Standard. Thereafter a frequency analysis is 

also done to determine the natural time period of the shell. The 
dynamic buckling analysis of shell under impulsive loading is 
carried out using ABAQUS/Explicit. For impact, rectangular 
loading is chosen, where a load of constant magnitude is 
applied suddenly for a finite duration. Different values of load 
duration, greater than and less than the natural period of the 
shell are considered for the study. The dynamic buckling loads 
are calculated using the Budiansky-Roth criterion. The 
dynamic buckling loads thus obtained are compared with 
static buckling loads. 

Composite conical shells are discretised using 4-noded 
S4R elements having six degrees of freedom per node, 
available in ABAQUS. S4R can be adopted for both static as 
well as dynamic analyses. Mesh convergence analysis was 
carried out and a model with 8580 elements, with 110 
elements along the circumferential direction and 78 elements 
along the axial direction was chosen for analysis. At the base
all the six degrees of freedom were arrested and at the loaded 
end only axial translation was allowed. Load was applied as 
uniformly distributed shell edge load and the loading diagram 
is as shown in Fig. 1(a).

III. STATIC BUCKLING
Under static buckling, two analyses namely linear static 

and nonlinear static analyses were carried out. Linear buckling 
analysis gives the theoretical buckling load for the perfect 
shells using linear shell theories. Always the linear buckling 

(a) Conical composite shell with axial compression

(b) Step pulse load for loading shells

Fig. 1 Model geometry and loading diagram for the composite shells
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strength will be greater than the actual buckling strength since 
it does not take into account the nonlinear behaviour of the 
shell. Hence, a non-linear analysis using modified Riks 
method was also carried out to determine the actual load 
carrying capacity of the shell. Nonlinear analyses were 
conducted on shells by considering imperfections with 
magnitude as a/t = 0, 0.05, 0.10, 0.25 and 0.50. The results of 
the buckling analyses for the shells with layups 
[0°/0°/60°/-60°]s and [0°/45°/-45°/0°]s are reported in Table II.
The buckling modes of the composite conical shells 
[0°/0°/60°/-60°]s and [0°/45°/-45°/0°]s obtained from the linear 
static analyses without imperfections are presented in Fig. 2.

TABLE II. STATIC BUCKLING LOAD (IN KN) FOR CFRP SHELL 

[0°/0°/60°/-60°]s 137

0 135
0.05 113
0.10 110
0.25 84
0.50 72

[0°/45°/-45°/0°]s 167

0 149
0.05 120
0.10 111
0.25 95
0.50 74

IV.DYNAMIC BUCKLING UNDER AXIAL IMPACT LOADS
Dynamic Buckling of the shell subjected to axial impact 

load is investigated here. Budiansky-Roth criterion was 
followed in order to determine the dynamic buckling load. The 
load value, at which there exists a sudden change in response, 
is taken as the dynamic buckling load for that particular 
duration. The response at any finite point is monitored using 
displacement at that particular point for small values of 
loading parameter. For smaller loads, small oscillations were 
observed at loads lower than the actual dynamic buckling 
load. When the load reaches its critical value, the 
displacement-time history curve experiences a sudden jump. 
The lowest load at which a sudden change in response occurs 
is taken as the dynamic buckling load for that particular 
duration. 

In this study, axial impact in the form of step pulse is 
applied as uniformly distributed shell edge load having 
constant magnitude applied with finite duration. The loading 
diagram is as shown in Fig. 1(b). From the frequency analysis, 
it was found that the natural frequency of composite conical 
shell was found to be around 718 Hz and hence the natural 
period of the system around 1.4 ms. Based on this, five time 
durations of pulse loading were adopted namely, T = 0.5ms, 
1ms, 1.5ms, 2ms and 5ms. Such a selection of load duration 
enables to understand the behaviour of shell under impulsive 
axial loading for different durations greater than and less than 
the natural period of the shell. 

In order to get good results from the dynamic studies, the 
points for which displacements is to be monitored must be 
carefully chosen. Therefore, axial displacement at a unique 
point on the loaded end of the shell was considered i.e, for all 
the layups a particular point (node) at the loading end of the 
shell was considered. Fig. 3 presents the axial displacement of 
a point on loaded end of the shell with layup [0°/0°/60°/-60°]s
without imperfections subjected to suddenly applied axial 
compression for a duration of 5ms for different loading 
magnitudes. Here, the curve corresponding to 85 kN show 
regular response and the cylinder vibrates about its 
equilibrium position. From 87 kN to 89 kN, there is a sudden 
change between two responses. This indicates the dynamic 
buckling condition and the load average equal to 88 kN is 
regarded as the dynamic buckling load of the shell [0°/0°/60°/-
60°]s for that particular time duration. This criterion was used 
to estimate the dynamic buckling loads, analyses were 

performed for different time durations and the results are 
reported in Table III. 

(i) Linear static (ii) nonlinear static

(a) [0°/0°/60°/-60°]s

(i) Linear static (ii) nonlinear static

(a) [0°/0°/60°/-60°]s

Fig. 2 Buckling modes obtained through static buckling analyses of 
perfect shells

Fig. 3 Axial displacement for different load magnitudes on perfect 
composite conical shell [0°/0°/60°/-60°]s
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V. RESULTS AND DISCUSSIONS

 Dynamic buckling of composite conical shells due to axial 
impact was studied for the shells with layup sequences 
[0°/0°/60°/-60°]s and [0°/45°/-45°/0°]s. Using static buckling 
analyses, the static buckling loads were found out for both the 
shells with and without imperfections. The dynamic buckling 
loads of composite conical shells with various imperfection 
amplitudes and for different load durations are plotted in Fig. 
4. Each plot gives the comparison between the dynamic
buckling loads with their corresponding static buckling loads. 
The dynamic buckling loads of composite conical shells were 
found to decrease with increase in load duration for all the 
amplitudes of imperfection. It was observed that as the 

imperfection amplitude was increased, the dynamic buckling 
load showed a declining trend for particular load duration. 
Also, the rate of decrease of load was found to be higher for 
composite shells having smaller magnitudes of imperfection. 
This trend was also observed in all shells irrespective of the 
layup sequence. In general, the dynamic buckling loads of the 
composite shells were found to decrease with increase in 
loading duration for all the imperfection amplitudes. The 
reason behind such a trend is the stress wave vibration that 
occurs between impacted and fixed end of the composite 
shells [9]. For duration less than the natural time period, the 
dynamic loads were found to be greater than corresponding

(i) a/t = 0 (i) a/t = 0.05

(i) a/t = 0.10 (i) a/t = 0.25

(v) a/t = 0.50 

Fig. 4 Dynamic buckling loads for composite conical shell - [0°/0°/60°/-60°]s with different imperfection amplitudes
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static buckling loads. The dynamic buckling loads of the 
composite conical shells were found to vary under increasing 

TABLE III. DYNAMIC BUCKLING LOADS (IN KN) OF CFRP SHELL 

[0°/0°/60°/-60°]s

0.5 240 166 131 118 118
1 184 116 103 85 83

1.5 140 105 93 79 76
2 110 92 85 76 74
5 88 74 72 68 63

[0°/45°/-45°/0°]s

0.5 166 144 131 123 123
1 142 103 94 90 88

1.5 127 92 90 88 88
2 107 92 90 88 88
5 87 87 83 76 70

imperfection amplitudes. The amplitude of the imperfections 
in the composite conical shells was found to influence their 
dynamic buckling loads more when the impact duration was 
smaller than the natural period. Hence the effect of amplitude 
on imperfections is significant in the case of smaller load 
durations and negligible in the case of longer impact 
durations. As the duration was found to increase, the dynamic 
buckling loads dropped below their static buckling loads.  

 From the Fig. 4 it is quite clear that the rate of decrease of 
load is high for smaller magnitudes of imperfection. Hence, 
the behaviour of composite conical shell with imperfection 
can be evaluated by considering small imperfection 
amplitudes as they lead to high percentage reduction in 
buckling loads. It is quite clear from this analysis that under 
load duration exceeding natural period of shells, using static 
buckling load as design load might be misleading. 

VI. CONCLUSIONS
The behaviour of composite conical shells with layups 
[0°/0°/60°/-60°]s and [0°/45°/-45°/0°]s under axial impact were 
studied for different durations. Effect of imperfection on the 
dynamic buckling strength of the shells were also studied 
using Koiter’s theory. The dynamic buckling loads were found 
to be larger than static load values when the time of 
application of loads were less than the natural period of the 
shell. When the load duration was increased, the dynamic 
buckling load values showed a declining trend and for 
duration greater that the natural period the dynamic buckling 
loads were found to be lower than their corresponding static 
buckling loads. Also, as the imperfection amplitude was 
increased, the buckling strength of shell was found to show a 
declining trend. The rate of decrease of load was found to be 
higher for smaller magnitudes of imperfection. In general, the 
present study proves that for design purpose taking the static 
buckling load might be unsafe under pulse loading for longer 
durations. 
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